We demonstrate the algorithm by running
the program on several famous graphs, including a proper four-coloring
of the map of India and two large Mycielski benchmark graphs with hidden
minimum vertex colorings. In each case, the algorithm finds a proper
m-coloring
of the vertices of the graph G in polynomial-time with m
equal to the chromatic number χ( G).
7.1. The Tetrahedron [8]. We run the program
on the graph of the Tetrahedron with n = 4 vertices. The algorithm
finds a proper m-coloring of the vertices for m = χ(G)
= 4.
graph.txt |
4
0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0 |
coloring.txt |
Vertex Coloring ( 4 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 3 ) ( 4 , 4 ) |
|
|
Figure 7.1. The graph of
the Tetrahedron with a proper m-coloring
( n = 4,
m = χ(G)
= 4 ).
7.2. The Kuratowski Bipartite Graph K3, 3 [9].
We run the program on the Kuratowski bipartite graph
K3, 3
with n = 6 vertices. The algorithm finds a proper m-coloring
of the vertices for m = χ(G) =
2.
graph.txt |
6
0 0 0 1 1 1
0 0 0 1 1 1
0 0 0 1 1 1
1 1 1 0 0 0
1 1 1 0 0 0
1 1 1 0 0 0 |
coloring.txt |
Vertex Coloring ( 6 ): ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 2 ) ( 6 , 2 ) |
|
|
Figure 7.2. The Kuratowski graph
K3, 3 with a proper m-coloring
( n = 6,
m = χ(G) =
2 ).
7.3. The Octahedron [8]. We run the program
on the graph of the Octahedron with n = 6 vertices. The algorithm
finds a proper m-coloring of the vertices for m = χ(G)
= 3.
graph.txt |
6
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0
0 1 1 0 1 1
1 0 1 1 0 1
1 1 0 1 1 0 |
coloring.txt |
Vertex Coloring ( 6 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 3 ) ( 4 , 1 )
( 5 , 2 ) ( 6 , 3 ) |
|
|
Figure 7.3. The graph of
the Octahedron with a proper m-coloring
( n = 6,
m = χ(G) =
3 ).
7.4. The Bondy-Murty Graph G1 [4].
We run the program on the Bondy-Murty graph G1 with n
= 7 vertices. The algorithm finds a proper m-coloring of the vertices
for m = χ(G) = 4.
graph.txt |
7
0 1 1 0 1 1 0
1 0 1 1 0 1 0
1 1 0 1 1 0 0
0 1 1 0 0 0 1
1 0 1 0 0 0 1
1 1 0 0 0 0 1
0 0 0 1 1 1 0 |
coloring.txt |
Vertex Coloring ( 7 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 3 ) ( 4 , 1 )
( 5 , 2 ) ( 6 , 3 ) ( 7 , 4 ) |
|
|
Figure 7.4. The Bondy-Murty
graph G1 with a proper m-coloring
( n = 7,
m = χ(G) =
4 ).
7.5. The Wheel Graph W8 [4].
We run the program on the Wheel graph W8 with n
= 8 vertices. The algorithm finds a proper m-coloring of the vertices
for m = χ(G) = 4.
graph.txt |
8
0 1 0 0 0 0 1 1
1 0 1 0 0 0 0 1
0 1 0 1 0 0 0 1
0 0 1 0 1 0 0 1
0 0 0 1 0 1 0 1
0 0 0 0 1 0 1 1
1 0 0 0 0 1 0 1
1 1 1 1 1 1 1 0 |
coloring.txt |
Vertex Coloring ( 8 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 3 ) ( 8 , 4 ) |
|
|
Figure 7.5. The Wheel graph
W8 with a proper m-coloring
( n = 8,
m = χ(G) =
4 ).
7.6. The Cube [8]. We run the program on the
graph of the Cube with
n = 8 vertices. The algorithm finds a proper
m-coloring
of the vertices for m = χ(G) =
2.
graph.txt |
8
0 1 0 1 0 1 0 0
1 0 1 0 0 0 1 0
0 1 0 1 0 0 0 1
1 0 1 0 1 0 0 0
0 0 0 1 0 1 0 1
1 0 0 0 1 0 1 0
0 1 0 0 0 1 0 1
0 0 1 0 1 0 1 0 |
coloring.txt |
Vertex Coloring ( 8 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 1 ) ( 8 , 2 ) |
|
|
Figure 7.6. The graph of
the Cube with a proper m-coloring
( n = 8,
m = χ(G) =
2 ).
7.7. The Petersen Graph [10]. We run the program
on the Petersen graph with n = 10 vertices. The algorithm finds
a proper
m-coloring of the vertices for m = χ(G)
= 3.
graph.txt |
10
0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 0 0 1 0 0
0 1 0 1 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 1
1 0 0 1 0 1 0 0 0 0
0 0 0 0 1 0 0 1 1 0
1 0 0 0 0 0 0 0 1 1
0 1 0 0 0 1 0 0 0 1
0 0 1 0 0 1 1 0 0 0
0 0 0 1 0 0 1 1 0 0 |
coloring.txt |
Vertex Coloring ( 10 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 3 ) ( 9 , 3 ) ( 10 , 1 ) |
|
|
Figure 7.7. The Petersen
graph with a proper m-coloring
( n = 10,
m = χ(G)
= 3 ).
7.8. The Bondy-Murty graph G2 [4].
We run the program on the Bondy-Murty graph G2 with n
= 11 vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 3.
graph.txt |
11
0 0 1 1 1 1 0 1 1 1 1
0 0 1 1 1 1 0 1 1 1 1
1 1 0 1 0 0 1 0 0 0 0
1 1 1 0 0 0 1 0 0 0 0
1 1 0 0 0 1 1 0 0 0 0
1 1 0 0 1 0 1 0 0 0 0
0 0 1 1 1 1 0 1 1 1 1
1 1 0 0 0 0 1 0 1 0 0
1 1 0 0 0 0 1 1 0 0 0
1 1 0 0 0 0 1 0 0 0 1
1 1 0 0 0 0 1 0 0 1 0 |
coloring.txt |
Vertex Coloring ( 11 ): ( 1 , 1 ) ( 2 , 1 ) ( 3 , 2 ) ( 4 , 3 )
( 5 , 2 ) ( 6 , 3 ) ( 7 , 1 ) ( 8 , 2 ) ( 9 , 3 ) ( 10 , 2 ) ( 11 , 3 ) |
|
|
Figure 7.8. The Bondy-Murty
graph G2 with a proper m-coloring
( n = 11,
m = χ(G)
= 3 ).
7.9. The Grötzsch Graph [11]. We run the
program on the Grötzsch graph with
n = 11 vertices. The algorithm
finds a proper
m-coloring of the vertices for m = χ(G)
= 4.
graph.txt |
11
0 1 1 1 1 1 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 1 0 1 0
1 0 0 0 0 0 0 0 1 0 1
1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 1 0 0 1
0 1 0 0 1 0 0 1 0 0 1
0 0 1 0 0 1 1 0 1 0 0
0 1 0 1 0 0 0 1 0 1 0
0 0 1 0 1 0 0 0 1 0 1
0 0 0 1 0 1 1 0 0 1 0 |
coloring.txt |
Vertex Coloring ( 11 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 2 ) ( 4 , 2 )
( 5 , 2 ) ( 6 , 2 ) ( 7 , 1 ) ( 8 , 3 ) ( 9 , 1 ) ( 10 , 3 ) ( 11 , 4 ) |
|
|
Figure 7.9. The Grötzsch
graph with a proper m-coloring
( n = 11,
m = χ(G)
= 4 ).
7.10. The Chvátal Graph [12]. We run
the program on the Chvátal graph with n = 12 vertices. The
algorithm finds a proper
m-coloring of the vertices for m
= χ(G) = 4.
graph.txt |
12
0 1 0 0 1 0 1 0 0 1 0 0
1 0 1 0 0 1 0 1 0 0 0 0
0 1 0 1 0 0 1 0 1 0 0 0
0 0 1 0 1 0 0 1 0 1 0 0
1 0 0 1 0 1 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 1 0 1
1 0 1 0 0 0 0 0 0 0 1 1
0 1 0 1 0 0 0 0 0 0 1 1
0 0 1 0 1 0 0 0 0 0 1 1
1 0 0 1 0 1 0 0 0 0 1 0
0 0 0 0 0 0 1 1 1 1 0 0
0 0 0 0 0 1 1 1 1 0 0 0 |
coloring.txt |
Vertex Coloring ( 12 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 3 ) ( 8 , 1 ) ( 9 , 4 ) ( 10 , 3 ) ( 11 , 2 )
( 12 , 2 ) |
|
|
Figure 7.10. The Chvátal
graph with a proper m-coloring
( n = 12,
m = χ(G)
= 4 ).
7.11. The Icosahedron [8]. We run the program
on the graph of the Icosahedron with n = 12 vertices. The algorithm
finds a proper
m-coloring of the vertices for m = χ(G)
= 4.
graph.txt |
12
0 1 1 0 0 1 1 1 0 0 0 0
1 0 1 1 1 1 0 0 0 0 0 0
1 1 0 1 0 0 0 1 1 0 0 0
0 1 1 0 1 0 0 0 1 1 0 0
0 1 0 1 0 1 0 0 0 1 1 0
1 1 0 0 1 0 1 0 0 0 1 0
1 0 0 0 0 1 0 1 0 0 1 1
1 0 1 0 0 0 1 0 1 0 0 1
0 0 1 1 0 0 0 1 0 1 0 1
0 0 0 1 1 0 0 0 1 0 1 1
0 0 0 0 1 1 1 0 0 1 0 1
0 0 0 0 0 0 1 1 1 1 1 0 |
coloring.txt |
Vertex Coloring ( 12 ): ( 1 , 3 ) ( 2 , 1 ) ( 3 , 2 ) ( 4 , 3 )
( 5 , 4 ) ( 6 , 2 ) ( 7 , 4 ) ( 8 , 1 ) ( 9 , 4 ) ( 10 , 1 ) ( 11 , 3 )
( 12 , 2 ) |
|
|
Figure 7.11. The graph of
the Icosahedron with a proper m-coloring
( n = 12,
m = χ(G)
= 4 ).
7.12. The Bondy-Murty graph G3 [4].We
run the program on the Bondy-Murty graph G3 with n
= 14 vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 2.
graph.txt |
14
0 0 0 1 0 0 0 1 0 0 0 1 0 0
0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1
1 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 1 0
0 1 0 0 0 1 0 1 0 0 0 0 0 0
1 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 1
0 0 0 0 1 0 0 0 1 0 1 0 0 0
0 1 0 0 0 0 0 0 0 1 0 1 0 0
1 0 0 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 1 0 0 0 0 0 1 0 1
0 0 1 0 0 0 0 0 1 0 0 0 1 0 |
coloring.txt |
Vertex Coloring ( 14 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 1 ) ( 8 , 2 ) ( 9 , 1 ) ( 10 , 2 ) ( 11 , 1 )
( 12 , 2 ) ( 13 , 1 ) ( 14 , 2 ) |
|
|
Figure 7.12. The Bondy-Murty
graph G3 with a proper m-coloring
( n = 14,
m = χ(G)
= 2 ).
7.13. The Bondy-Murty graph G4 [4].
We run the program on the Bondy-Murty graph G4 with n
= 16 vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 3.
graph.txt |
16
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 |
coloring.txt |
Vertex Coloring ( 16 ): ( 1 , 1 ) ( 2 , 1 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 2 ) ( 8 , 2 ) ( 9 , 1 ) ( 10 , 2 ) ( 11 , 1 )
( 12 , 1 ) ( 13 , 2 ) ( 14 , 1 ) ( 15 , 3 ) ( 16 , 1 ) |
|
|
Figure 7.13. The Bondy-Murty
graph G4 with a proper m-coloring
( n = 16,
m = χ(G)
= 3 ).
7.14. The Ramsey Graph R(4,4) [6]. We
run the program on the Ramsey graph R(4,4) with n = 17 vertices.
The algorithm finds a proper
m-coloring of the vertices for m
= χ(G) = 6.
graph.txt |
17
0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1
1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0 1
1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1 0
0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0 1
1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0 0
0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0 0
0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1 0
0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1 1
1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0 1
1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0 0
0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0 0
0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1 0
0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0 1
1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1 0
0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1 1
1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 1
1 1 0 1 0 0 0 1 1 0 0 0 1 0 1 1 0 |
coloring.txt |
Vertex Coloring ( 17 ): ( 1 , 2 ) ( 2 , 1 ) ( 3 , 3 ) ( 4 , 4 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 6 ) ( 8 , 5 ) ( 9 , 4 ) ( 10 , 3 ) ( 11 , 2 )
( 12 , 6 ) ( 13 , 5 ) ( 14 , 4 ) ( 15 , 3 ) ( 16 , 1 ) ( 17 , 6 ) |
|
|
Figure 7.14. The Ramsey graph
R(4,4) with a proper m-coloring
( n = 17,
m = χ(G)
= 6 ).
7.15. The Dodecahedron [8]. We run the program
on the graph of the Dodecahedron with n = 20 vertices. The algorithm
finds a proper
m-coloring of the vertices for m = χ(G)
= 3.
graph.txt |
20
0 1 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
0 1 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0
0 1 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0 |
coloring.txt |
Vertex Coloring ( 20 ): ( 1 , 2 ) ( 2 , 3 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 3 ) ( 9 , 2 ) ( 10 , 3 ) ( 11 , 2 )
( 12 , 1 ) ( 13 , 3 ) ( 14 , 1 ) ( 15 , 3 ) ( 16 , 2 ) ( 17 , 3 ) ( 18
, 1 ) ( 19 , 3 ) ( 20 , 1 ) |
|
|
Figure 7.15. The graph of
the Dodecahedron with a proper m-coloring
( n = 20,
m = χ(G)
= 3 ).
7.16. The Mycielski 5-Chromatic Graph [13].
We run the program on the Mycielski 5-chromatic graph with n = 23
vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 5.
graph.txt |
23
0 1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0
1 0 1 0 0 1 0 1 0 0 0 1 0 1 0 0 1 0 1 0 0 0 0
0 1 0 0 1 0 1 0 0 1 0 0 1 0 0 1 0 1 0 0 1 0 0
1 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1 1 0 0 0 1 0 0
0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 1 0 0 0
0 1 0 1 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 1 0
1 0 1 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 1 0
0 1 0 0 1 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 0 1 0
1 0 0 0 1 0 0 0 0 0 1 1 0 0 0 1 0 0 0 0 0 1 0
0 0 1 1 0 0 0 0 0 0 1 0 0 1 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 1 1 1 1 1 0 0
0 1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 1 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 |
coloring.txt |
Vertex Coloring ( 23 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 1 ) ( 9 , 2 ) ( 10 , 3 ) ( 11 , 4 )
( 12 , 1 ) ( 13 , 2 ) ( 14 , 1 ) ( 15 , 2 ) ( 16 , 3 ) ( 17 , 1 ) ( 18
, 2 ) ( 19 , 1 ) ( 20 , 2 ) ( 21 , 3 ) ( 22 , 4 ) ( 23 , 5 ) |
|
|
Figure 7.16. The Mycielski
5-chromatic graph with a proper m-coloring
( n = 23,
m = χ(G)
= 5 ).
7.17. The Grünbaum Graph [12]. We run the
program on the Grünbaum graph with n = 25 vertices. The algorithm
finds a proper
m-coloring of the vertices for m = χ(G)
= 4.
graph.txt |
25
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0
1 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 1 0
1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 1
0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 1
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 1 0 0 0 0
0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 1 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 |
coloring.txt |
Vertex Coloring ( 25 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 1 ) ( 6 , 2 ) ( 7 , 3 ) ( 8 , 2 ) ( 9 , 1 ) ( 10 , 2 ) ( 11 , 3 )
( 12 , 2 ) ( 13 , 1 ) ( 14 , 3 ) ( 15 , 3 ) ( 16 , 2 ) ( 17 , 1 ) ( 18
, 1 ) ( 19 , 4 ) ( 20 , 3 ) ( 21 , 1 ) ( 22 , 3 ) ( 23 , 3 ) ( 24 , 4 )
( 25 , 3 ) |
|
|
Figure 7.17. The Grünbaum
graph with a proper m-coloring
( n = 25,
m = χ(G)
= 4 ).
7.18. The Map of India [14]. The 30 states of
mainland India are shown below in Figure 7.18.1. We define the graph of
India as follows. There is a unique vertex inside each region defined by
a state. There is an edge connecting two distinct vertices if and only
if the two corresponding regions have a whole segment of their boundaries
in common. The graph of India is shown below in Figure 7.18.2. We run the
program on the graph of India with n = 30 vertices. The algorithm
finds a proper
m-coloring of the vertices for m = χ(G)
= 4, and correspondingly, a proper four-coloring of the map of India.
|
Figure 7.18.1. The Map of
India with a proper four-coloring of its 30 mainland states.
graph.txt |
30
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 1 0 0 0 0 1 1 0
0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 0 0 0 0 0 0 0
0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 0 1 0 0 1 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 0 1
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 |
coloring.txt |
Vertex Coloring ( 30 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 3 ) ( 4 , 1 )
( 5 , 4 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 1 ) ( 9 , 1 ) ( 10 , 2 ) ( 11 , 3 )
( 12 , 1 ) ( 13 , 2 ) ( 14 , 1 ) ( 15 , 2 ) ( 16 , 1 ) ( 17 , 1 ) ( 18
, 3 ) ( 19 , 4 ) ( 20 , 3 ) ( 21 , 1 ) ( 22 , 4 ) ( 23 , 1 ) ( 24 , 2 )
( 25 , 2 ) ( 26 , 1 ) ( 27 , 3 ) ( 28 , 2 ) ( 29 , 1 ) ( 30 , 2 ) |
|
|
Figure 7.18.2. The graph
of India with a proper m-coloring
( n = 30,
m = χ(G)
= 4 ).
7.19. The Mycielski 6-Chromatic Graph [13].
We run the program on the Mycielski 6-chromatic graph with n = 47
vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 6.
coloring.txt |
Vertex Coloring ( 47 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 1 ) ( 9 , 2 ) ( 10 , 3 ) ( 11 , 4 )
( 12 , 1 ) ( 13 , 2 ) ( 14 , 1 ) ( 15 , 2 ) ( 16 , 3 ) ( 17 , 1 ) ( 18
, 2 ) ( 19 , 1 ) ( 20 , 2 ) ( 21 , 3 ) ( 22 , 4 ) ( 23 , 5 ) ( 24 , 1 )
( 25 , 2 ) ( 26 , 1 ) ( 27 , 2 ) ( 28 , 3 ) ( 29 , 1 ) ( 30 , 2 ) ( 31
, 1 ) ( 32 , 2 ) ( 33 , 3 ) ( 34 , 4 ) ( 35 , 1 ) ( 36 , 2 ) ( 37 , 1 )
( 38 , 2 ) ( 39 , 3 ) ( 40 , 1 ) ( 41 , 2 ) ( 42 , 1 ) ( 43 , 2 ) ( 44
, 3 ) ( 45 , 4 ) ( 46 , 5 ) ( 47 , 6 ) |
|
|
Figure 7.19. The Mycielski
6-chromatic graph with a proper m-coloring
( n = 47,
m = χ(G)
= 6 ).
7.20. The Mycielski 7-Chromatic Graph [13].
We run the program on the Mycielski 7-chromatic graph with n = 95
vertices. The algorithm finds a proper
m-coloring of the vertices
for m = χ(G) = 7.
coloring.txt |
Vertex Coloring ( 95 ): ( 1 , 1 ) ( 2 , 2 ) ( 3 , 1 ) ( 4 , 2 )
( 5 , 3 ) ( 6 , 1 ) ( 7 , 2 ) ( 8 , 1 ) ( 9 , 2 ) ( 10 , 3 ) ( 11 , 4 )
( 12 , 1 ) ( 13 , 2 ) ( 14 , 1 ) ( 15 , 2 ) ( 16 , 3 ) ( 17 , 1 ) ( 18
, 2 ) ( 19 , 1 ) ( 20 , 2 ) ( 21 , 3 ) ( 22 , 4 ) ( 23 , 5 ) ( 24 , 1 )
( 25 , 2 ) ( 26 , 1 ) ( 27 , 2 ) ( 28 , 3 ) ( 29 , 1 ) ( 30 , 2 ) ( 31
, 1 ) ( 32 , 2 ) ( 33 , 3 ) ( 34 , 4 ) ( 35 , 1 ) ( 36 , 2 ) ( 37 , 1 )
( 38 , 2 ) ( 39 , 3 ) ( 40 , 1 ) ( 41 , 2 ) ( 42 , 1 ) ( 43 , 2 ) ( 44
, 3 ) ( 45 , 4 ) ( 46 , 5 ) ( 47 , 6 ) ( 48 , 1 ) ( 49 , 2 ) ( 50 , 1 )
( 51 , 2 ) ( 52 , 3 ) ( 53 , 1 ) ( 54 , 2 ) ( 55 , 1 ) ( 56 , 2 ) ( 57
, 3 ) ( 58 , 4 ) ( 59 , 1 ) ( 60 , 2 ) ( 61 , 1 ) ( 62 , 2 ) ( 63 , 3 )
( 64 , 1 ) ( 65 , 2 ) ( 66 , 1 ) ( 67 , 2 ) ( 68 , 3 ) ( 69 , 4 ) ( 70
, 5 ) ( 71 , 1 ) ( 72 , 2 ) ( 73 , 1 ) ( 74 , 2 ) ( 75 , 3 ) ( 76 , 1 )
( 77 , 2 ) ( 78 , 1 ) ( 79 , 2 ) ( 80 , 3 ) ( 81 , 4 ) ( 82 , 1 ) ( 83
, 2 ) ( 84 , 1 ) ( 85 , 2 ) ( 86 , 3 ) ( 87 , 1 ) ( 88 , 2 ) ( 89 , 1 )
( 90 , 2 ) ( 91 , 3 ) ( 92 , 4 ) ( 93 , 5 ) ( 94 , 6 ) ( 95 , 7 ) |
|
|
Figure 7.20. The Mycielski
7-chromatic graph with a proper m-coloring
( n = 95,
m = χ(G)
= 7 ).
|