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ABSTRACT 

Using the axiom of choice, we prove that given any group G and a finite subgroup H, there 

always exists a common system of coset representatives for the left and right cosets of H in G. 
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We shall prove that given any group G and a finite subgroup H, there always exists a 

common system of coset representatives for the left and right cosets of H in G. Precise 

definitions and examples are given below. The proof uses the standard von Neumann - 

Bernays - Gödel (NBG) axioms of set theory [1] together with  

The Axiom of Choice. Given any set X of nonempty pairwise disjoint sets, there is a set 

Y, called a choice set, that contains exactly one element of each set in X.  

A nonempty set I together with a binary relation  is called a partially ordered set if, for 

all i,  j, k in I  

 i  i (reflexivity)  

 i  j and j k implies i  k (transitivity)  

 i  j and j i implies i = j (antisymmetry)  

We write i  j when i j and i is not equal to j. Given a nonempty subset J of a partially 

ordered set I, an element j0 of J is called a least element of J if  j0 j for all j in J. A 

partially ordered set I is said to be well-ordered if every nonempty subset of I has a least 

element. Note that in a well-ordered set any two elements i,  j are comparable since the 

subset { i, j } must have a least element. We shall use  
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The Well-Ordering Principle. Every set can be well-ordered.  

Proof. See [1], the proof of proposition 4.37. The axiom of choice implies Zorn's lemma. 

Zorn's lemma implies the well-ordering principle.   

In particular, given any set X, we may index the elements of X by a well-ordered index 

set I and write X = { xi | i in I }. In this notation we may now state and prove  

The Transfinite Induction Principle. Let X = { xi | i in I } be any set indexed by a well-

ordered set I. If P is a property such that, for any i in I, whenever all xj with  j i have 

property P, then xi has property P, then all elements of X have property P.  

Proof. Let Y = { x in X  | x has property P }. Suppose X - Y is nonempty, then there is a 

least element xi in X - Y. By the definition of least element and X - Y we must have, for 

any xj with  j i, that xj has the property P. But then, by hypothesis, xi has property P, a 

contradiction. Therefore, X - Y is empty and X = Y.   

A set G together with a binary operation (written here in the usual multiplicative 

notation) is called a group if  

 For all x, y, z in G, x( yz) = (xy)z (associativity)  

 There exists an identity element 1 in G such that for all x in G, x1 = x = 1x  

 For each x in G, there exists an inverse element x
-1

 in G such that xx
-1

 = 1 = x
-1

x  

It is easy to show that the identity element 1 is unique and, for each x in G, the inverse 

element x
-1

 is unique, see [2]. A nonempty subset H of a group G is called a subgroup if, 

for all h1, h2 in H  

 h1h2 is in H  

 h1
-1

 is in H  

From the definition it follows that the identity element 1 = h1h1
-1

 is in H and the subgroup 

H is itself a group under the induced binary operation of multiplication. For any element 

x of G, the map g  xgx
-1

 is a bijection from G to G, called the inner automorphism of G 

under conjugation by x and this map induces a bijection from H to xHx
-1

 which is also a 

subgroup of G. Given any element x of G, the set xH = { xh | h in H } is called a left coset 

of H in G, the set Hx = { hx | h in H } is called a right coset of H in G and the set HxH =  

{ h1xh2 | h1, h2 in H } is called a double coset of H in G. An element of a coset is called a 

representative for that coset. The maps h  xh and h hx induce bijections from H to 

xH and Hx respectively. Suppose z belongs to the left cosets xH and yH, then z = xh1 = 

yh2 for some h1, h2 in H, so xH =  yh2h1
-1

H = yH. Also, any x in G belongs to a left coset, 

namely xH. Thus G is the disjoint union of the left cosets of H. Similarly, G is the disjoint 

union of the right cosets of H and lemma 1 below proves that G is the disjoint union of 

the double cosets of H. Since (Hx)
-1

 = { (hx)
-1

 | h in H, x in G } = { x
-1

h
-1

 | h in H, x in G } 

= x
-1

H  and (yH)
-1

 = { (yh)
-1

 | h in H, y in G } = { h
-1

y
-1

 | h in H, y in G } = Hy
-1

, there is a 

bijection between the set of all left cosets and the set of all right cosets of H in G. A set 
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consisting of exactly one representative of each left coset from the set of all left cosets of 

H in G is called a system of representatives for the left cosets of H in G. Similarly, a set 

consisting of exactly one representative of each right coset from the set of all right cosets 

of H in G is called a system of representatives for the right cosets of H in G. By the 

axiom of choice, a system of representatives for the left cosets of H in G exists and a 

system of representatives for the right cosets of H in G exists. A set that is simultaneously 

a system of representatives for the left cosets of H in G and a system of representatives 

for the right cosets of H in G is called a common system of representatives for the left and 

right cosets of H in G.  

Lemma 1. Let G be a group and H a subgroup. Then G is the disjoint union of the set of 

double cosets { HgH | g in G }.  

Proof. Suppose x belongs to the double cosets Hg1H and Hg2H. Then x = h'1g1h'2 = 

h''1g2h''2 for some h'1, h'2, h''1, h''2 in H. Then g1 = h'1
-1

h''1g2h''2h'2
-1

 and so, for any h1, h2 in 

H, we have  h1g1h2 = h1h'1
-1

h''1g2h''2h'2
-1

h2 showing that Hg1H is contained in Hg2H. 

Similarly g2 = h''1
-1

h'1g1h'2h''2
-1

 and so, for any h1, h2 in H, we have  h1g2h2 =  

h1h''1
-1

h'1g1h'2h''2
-1

h2 showing that Hg2H is contained in Hg1H. Thus Hg1H = Hg2H. This 

proves that distinct double cosets cannot have any elements in common and must be 

disjoint. Since every g in G can be written as g = 1g1, every g in G belongs to at least one 

double coset, namely HgH. This proves that the union of the disjoint double cosets is all 

of G.   

Lemma 2. Let G be a group and H a subgroup. Let HgH be a fixed double coset of H in 

G. Then  

 Every left coset of H in G is either contained in HgH or disjoint from it. Hence 

HgH is the disjoint union of the left cosets of H in G that are contained in HgH.  

 Every right coset of H in G is either contained in HgH or disjoint from it. Hence 

HgH is the disjoint union of the right cosets of H in G that are contained in HgH.  

Proof. Let xH be a left coset of H in G. Suppose xh is an element of xH such that xh 

belongs to HgH. Then xh = h1gh2 for some h1, h2 in H, so x = h1gh2h
-1

. Thus, for any h' in 

H, xh' = h1gh2h
-1

h' showing that the left coset xH is contained in HgH. This proves that 

either the left coset xH is contained in HgH or disjoint from it. Any two left cosets are 

disjoint because if x is in yH and zH then x = yh1= zh2 for some h1, h2 in H, so z =  yh1h2
-1

 

shows that yH = zH. Also, every h1gh2 in HgH belongs to some left coset contained in 

HgH, namely h1gH. This proves that HgH is the disjoint union of the left cosets of H in G 

that are contained in HgH. Similarly, let Hx be a right coset of H in G. Suppose hx is an 

element of Hx such that hx belongs to HgH. Then hx = h1gh2 for some h1, h2 in H, so x = 

h
-1

h1gh2. Thus, for any h' in H, h'x = h'h
-1

h1gh2 showing that the right coset Hx is 

contained in HgH. This proves that either the right coset Hx is contained in HgH or 

disjoint from it. Any two right cosets are disjoint because if x is in Hy and Hz then x = h1y 

= h2z for some h1, h2 in H, so z =  h2
-1

h1y shows that Hy = Hz. Also, every h1gh2 in HgH 

belongs to some right coset contained in HgH, namely Hgh2. This proves that HgH is the 

disjoint union of the right cosets of H in G that are contained in HgH.   
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Lemma 3. Let G be a group and H a finite subgroup. Let HgH be a fixed double coset of 

H in G. Then there exists a system of representatives for the left cosets of H in G that are 

contained in HgH such that distinct representatives belong to distinct right cosets of H in 

G that are contained in HgH.  

Proof. There are two cases.  

 Case 1. Suppose Hg = gH. Then HgH contains exactly one left coset gH = HgH 

and exactly one right coset Hg = HgH. In this case, select g as a representative of 

the left coset gH and then g belongs to the unique right coset Hg contained in 

HgH.  

 Case 2. Suppose Hg is not equal to gH. By lemma 2 and the well-ordering 

principle, let { Li | i in I } denote the set of left cosets of H in G that are contained 

in HgH, indexed by a well-ordered set I. Note that any left coset xH contained in 

HgH can be written as xH = hgH for some h in H. Hence, by the axiom of choice, 

we can select { hi in H | i in I } such that { Li | i in I } = { higH | i in I }. We shall 

now use the principle of transfinite induction. Given i in I, assume that for all j i 

we have selected h'j in H such that the right cosets Hgh'j are all distinct. We claim 

that we can select h'i in H such that the right coset Hgh'i is distinct from all the 

right cosets Hgh'j where j i. Suppose not. Then for each h in H there exists a 

right coset Hgh'j = Hgh with ji. Thus for each h in H, there exist h'j, h''j, h'''j in H 

such that h''jgh'j = h'''jgh. That is, for each h in H, there exist h'j, h''j, h'''j in H such 

that h'''j
-1

h''jg = ghh'j
-1

. Thus Hg contains gHh'j
-1

 = gH and so H contains gHg
-1

. 

This is the point in the proof where we use the fact that H is finite. Since the inner 

automorphism under conjugation by g is bijective and H is finite, H = gHg
-1

. But 

then, Hg = gH, a contradiction to the assumption of case 2. Hence, our claim is 

true: we can select h'i in H such that the right coset Hgh'i is distinct from all the 

right cosets Hgh'j where j i. By the principle of transfinite induction, we can 

select distinct right cosets { Hgh'i | i in I }. Note that higH = high'iH and Hgh'i = 

Hhigh'i for all i in I. Thus, the element high'i is a common representative for the 

left coset higH and the right coset Hgh'i for all i in I. It follows that the set  

{ high'i | i in I } is a system of representatives for the left cosets of H in G that are 

contained in HgH such that distinct representatives belong to distinct right cosets 

of H in G that are contained in HgH.   

 

Proposition. Let G be a group and H a finite subgroup. Then there exists a common 

system of coset representatives for the left and right cosets of H in G.  

Proof. By lemma 1 and the axiom of choice, select a set { gj in G | j in J } such that  

{ HgjH | j in J } is the set of disjoint double cosets whose union is G. By lemma 3 and the 

axiom of choice, select a set { Sj | j in J } where Sj is a set of representatives for the left 

cosets of H in G that are contained in HgjH such that distinct representatives belong to 

distinct right cosets of H in G that are contained in HgjH. Form the union S of all the sets 

in { Sj | j in J }. Then S is a system of representatives for all left cosets of H in G such that 

distinct representatives belong to distinct right cosets of H in G. But, as observed above, 
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there is a bijection between the set of all left cosets of H in G and the set of all right 

cosets of H in G. Thus each right coset of H in G must have an element in S. It follows 

that the set S must be a common system of representatives for the left and right cosets of 

H in G.   

Example 1. Let G = S3 denote the symmetric group on three letters consisting of all 

permutations of the set {1, 2, 3} 

1 = (  1   2   3  

 1   2   3  
 

) 
 

α = (  1   2   3  

 2  3  1 
 

) 
 

β = (  1   2   3  

 3  1  2 
 

) 
 

γ = (  1   2   3  

 1   3   2  
 

) 
 

δ = (  1   2   3  

 3  2  1 
 

) 
 

ε = (  1   2   3  

 2  1  3 
 

) 
 

 

 

together with the binary operation of permutation multiplication. To facilitate our 

computation, let us write the multiplication table for the group G explicitly: 

  

   

       

       

       

       

       

       

       

 

Consider the subgroup H = { 1, }. The double cosets of H in G are { 1, } and  

{ , , , }. The left cosets of H in G are { 1, }, { , } and { , }. The right cosets 

of H in G are { 1, }, { , } and { , }. We may select  as a common representative 

of the left coset { 1, } and the right coset { 1, } contained in the double coset { 1, }. 

We may select and  as common representatives for the left cosets { , }, { , } and 

right cosets { , }, { , } respectively, contained in the double coset { , , , }. The 

union of the selected representatives { , , } is a common system of representatives for 

the left and right cosets of H in G in this example where H is finite. 
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Example 2. Finally, we give an example of a group G and subgroup H that do not satisfy 

the hypotheses of the proposition and for which there cannot exist a common system of 

representatives for the left and right cosets of H in G. Consider the group G generated by 

x, y subject to the relation xy = y
2
x. Let H be the subgroup generated by y. Then H =  

{ y
n
 | n is any integer } is an infinite subgroup. Using the relation inductively, it is easy to 

see that for any integer n, xy
n
x

-1
 = y

2n
. Thus the subgroup xHx

-1
= { y

2n
 | n is any integer } 

is properly contained in the subgroup H. This implies that the left coset xH is properly 

contained in the right coset Hx which is equal to the double coset HxH. But then by 

lemma 2, the double coset HxH contains at least two left cosets and exactly one right 

coset. Thus, it is impossible to select representatives for the left cosets of H in HxH that 

belong to distinct right cosets of H in HxH. By lemma 1 and lemma 2, it follows that it is 

impossible to select representatives for the left cosets of H in G that belong to distinct 

right cosets of H in G. Thus, there cannot exist a common system of representatives for 

the left and right cosets of H in G in this example where H is infinite. 
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